
Estimates for Difference Quotients of Solutions 
of Poisson Type Difference Equations* 

By Achi Brandtt 

1. Introduction. The following problem is frequently treated in the literature: 
Given a finite-difference operator L defined for a function 4 on some open, connected 
region R, with boundary R, what estimates can be given for SUPR I 4 1 in terms of 
SUPR I Lo I and sup' I 4 |I? Such estimates are essential for the appraisal of discretiza- 
tion and round-off errors in a finite-difference approximation to the solution of a 
differential equation. For a linear operator L of nonnegative type (i.e. L satisfies a 
maximum principle), estimates of this kind are derivable by the well-known 
Gerschgorin [6] method and its extensions (see [5]). The method is to bound i 4 1 by 
a certain comparison function A, by showing, using the maximum principle, that 
both 4 - _ ? 0 and -4) - _ 0 throughout the region. 

However, there is practically nothing so far published concerning the more 
delicate problem of estimating difference-quotients of the function 4) in terms of 
SUPR I Lo I and the boundary data. Such estimates are necessary for the assessment 
of discretization and round-off errors introduced whenever a derivative of the solution 
of a differential equation is computed from the finite-difference approximation. 
These estimates are also indispensable, in some (especially nonlinear) cases, for the 
proof of the convergence of the numerical scheme itself. (See for example in D. F. 
DeSanto and 1I. B. Keller [3], where such estimates for the Laplace operator are 
needed to demonstrate the convergence of a numerical scheme representing some 
incompressible viscous flow.) We believe such estimates might be useful for various 
existence proofs associated with nonlinear finite-difference equations. 

The purpose of this paper is, therefore, to describe a method which gives bounds 
for the difference-quotients, up to the second order, of a discrete function 4, the 
bounds depending on SUPR I Lo 1, where L is of the nonnegative type, and on some 
boundary conditions. The boundary conditions are, of course, of crucial importance 
here, since for points near the boundary the difference-quotients of 4 depend heavily 
on the smoothness of 4 on the boundary, as well as on the smoothness of the bound- 
ary itself. Of course, for points away from the boundary this dependence on the 
smoothness of the boundary conditions disappears, and we can estimate the differ- 
ence-quotients in terms of SUPR I Lo I and supi I 4 I alone. Estimates which are con- 
fined to an interior region bounded away from the boundary, are called "interior 
estimates". 

Some typical interior estimates obtained in this paper are the following: 
THEOREM 1 . 1. In an n-dimensional Euclidean space, let R be the open cube with the 

origin 0 = (0, O0 ... , 0) at its center, and with side length 2b; i.e. 

(1.1) 1R = {(xl x2, . XX Xxn) I k I < b, 1 _ k _ n}; 
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and let R be its boundary. If then 

(1.2) AO ? l _ in R, 

and 

(1.3) o on R 

then 

(1.4) [(O) ?+bu + 2 b26n 

(1.5) | ad ?~~~(0) < n. + 2 W6 1 _ k _ n, 
dXk b 2 

(1.6) 
ad ?(0) -<b 2 + (log ) 6) 1 _ k < I _ n, 

a2 4(n -1) 
(1.7) d 

42 
- 

+ [- + ( - !) log] 6, 1 ? k ? n. 

Here A and a are not the usual Laplace and partial-differentiation operators, respec- 
tively, but rather they represent difference-quotients analogous to them, on a square lat- 
tice with mesh spacing h. 

This theorem, which we prove in Section 3, provides estimates for difference- 
quotients not only at the center of a cube, as stated, but actually (as explained at 
the beginning of Section 5) it yields interior estimates for practically any region. 
Also we show that, under conditions (1.2) and (1.3), inequalities (1.4)-(1.7) are, in 
fact, the best possible estimates, except possibly for some minor improvements in 
the numerical coefficients. 

Although we restrict our proof to the finite-difference formulation of Theorem 
1.1, it should be noted that the differential analogue of this theorem (as well as of 
any other hereingiven) is also true, and basically the same proofs are applicable. By 
the "differential analogue of Theorem 1.1" we mean, of course, that the A and a 
operators have their usual differential meaning. However, this cannot be the meaning 
of a in estimates like (1.6) or (1.7), where explicit dependence on the mesh-size h 
is exhibited. For the continuous analogues of these estimates, the operator a2/aXkaX1 

in (1.6) (and similarly a2/aXk2) should be interpreted as a first-order difference- 
quotient of a first-order partial derivative, notwithstanding the interpretation of A 
as the differential Laplacian. This leads, by corresponding changes in the proofs, to 
the estimate 

(1.6a) - (hek) - +(-hek) -4-M + 1 llog-n 1, 
2hax, ax1 

where ek is the unit vector in the Xk direction. 
In contrast to the absence of published material about the finite difference case, 

there is a vast literature concerning estimates for the derivatives of solutions of 
partial differential equations. (See [7].) J. Schauder [8], [9] obtained such estimates, 
bounding the modulus of any first- or second-order derivative of the solution 0, for 
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any linear elliptic equations of the second order Lo = f. He obtained both interior 
estimates and estimates near the boundary. The former depend on sup I 4;, sup I f [, 
and the H6lder-continuity of f and of the coefficients of L, while the latter estimates 
also depend on H6lder-norms related to the smoothness of the boundary conditions. 
Motivated by Schauder estimates, we show, in Section 4, that also in the finite 
difference case, if AO satisfies a Holder-condition at a point, then the second-order 
difference-quotients at that point have bounds not depending on h. 

Schauder estimates were extended to elliptic systems of great generality by A. 
Douglis and L. Nirenberg [4] and by S. Agmon, A. Douglis and L. Nirenberg [1], 
[2]. In addition, the latter gave analogous L, estimates, for p > 1, up to the bound- 
ary. They also present an extensive bibliography on this subject. The differential 
analogies to most of our theorems are just special cases of the results of this extensive 
literature. Only inequalities (1.6), or (1.6a), and (1.7) seem to have no counterpart 
therein. The methods we use to obtain these results are quite different from those 
used in the above theory. The proofs in the above mentioned papers rely on potential 
theoretic considerations, which, presumably, cannot be conveniently translated into 
a discrete form. (This may explain the sparsity of literature on the finite-difference 
case. A work by H. Montvila [8], whose methods are essentially discrete analogues 
to the usual continuous methods, comes out with estimates much weaker than ours.) 
Our methods are more elementary, using only the maximum principle and some sym- 
metries exhibited by the operators. Thus, incidentally, the continuous analogues of 
our proofs provide more elementary derivations of some of the known differential 
results. 

Our results and proofs are themselves capable of generalization in several di- 
rections. In Section 5 we discuss the continuation of the interior estimates to the 
vicinity of some straight portion of the boundary. For more general boundaries 
similar methods are applicable, with some additional complexities common to all 
finite-difference calculations near curved boundaries. This work is currently in 
progress. 

In Section 6 the up-to-the-boundary estimates for the Dirichlet problem for the 
Laplacian are generalized to the discrete version of the operator 

L = A + p(x, y)o/ox + q(x, y)Q/dy, 

which, for constant p and q, is essentially the canonical form of the elliptic equa- 
tion of second order with constant coefficients. Generalization of the estimates 
to other discrete elliptic operators are at present under investigation. 

In Section 7 we present up-to-the-boundary estimates for the Neumann prob- 
lem, to illustrate how our techniques have to be modified in this case. In a subse- 
quent paper we plan to present some of the above-indicated generalizations. 

The author is indebted to Professor Louis Nirenberg for helpful discussions. 

2. Preliminary Notation and Lemmas. The methods used in this and the forth- 
coming sections are applicable for Euclidean spaces of arbitrary dimension (higher 
than 1). However, for convenience of notation, we shall regularly restrict ourselves 
to the x-y plane, leaving for later remarks the slight modifications necessary for 
higher dimensions. 

For the finite-difference formulation we cover the plane by a square lattice of net 
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points Pij = (xi , y1), with 

xi=ih, yj= jh, 

where i and j are integers and h some fixed positive constant (the mesh spacing). 
In the present paper we consider some open, connected region whose boundary is 
solely composed of vertical and horizontal links of the net, so that the region is 
actually a union of meshes of the net. The set of net points which are interior to that 
region, is called R1, and the set of net points which lie on its boundary is called R. It is 
such a set of net points R that we mean hereinafter when we speak of "a region". 
We also regularly denote P = R + R. 

The special types of regions, rectangles and infinite strips, which we consider are 
denoted respectively by 

Rab {(xi yj)l xi < a, i yj < b} 
and 

Rb =f(Xi Yj) I Yj Il < b}. 

It is always assumed in this paper that a = Mh, b = Nh, where M and N are positive 
integers. By the above convention we now also have 

Rab = {(xi , yj) xi I < a, IyjI < b}, 

Rb = {(Xiyj) I j l < b}, 

and 

Rkb = Rab- Rab 

Rb = Rb -Rb 

The following definition of "distance along the lattice" will be useful: 

d(P, Q) = xp- XQ I + I yP - YQ 1, 

where P = (xp, yp) and Q = (XQ, yQ) are any two lattice points. For any set S of 
lattice points we put 

d(P, S) = min d(P, Q). 
QES 

For any function 4 defined on the mesh we employ the notation 

0ij = 4(xi, yj) = O(Pij)l 

axoij = (1/2h)(4i+?,j - o-14)1 

lyoij = (1/2h)(i,ij+1 - ij-1), 

(2.0) A9yo = (1/4h2) (oi+lj+l + 4)-l,j-l -_ i+l,j-1l _ j+-) 

a,,oi ,j= ( 1/h2) (4i+1,j + i-1,j-20ij), 

ayyoij = (11/h2)(4i,j+ + ,j-l-20ij), 

/\+ j = (1/h2)(oi+lj + oij+l + oi-,,j + H j-1-40tj). 
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Notice that &9, Q9, and d9, are defined by central difference expressions. For treat- 
ment of other possible definitions, see Section 8. 

We shall use the discrete analogue of the maximum principle in the following 
form: 

LEMMA 2.1. If R is a region for which 

(2.1) sup d(P, I) < oc 
PER 

and if q5 is a bounded function for which' 

(2.2) /v+ (R) _ 0 

and 

(2.3) +(R) > 0 

then 

(2.4) ?(R) ? 0. 

Note that condition (2.1) is obviously satisfied whenever R is a bounded region, 
and in this case the boundedness of 4 should not be explicitly required. But con- 
dition (2.1) is also satisfied in other cases, e.g. any region R which is a subset of the 
infinite strip Rb 

Proof. We put 

(2.5) Nh= sup d(P, k), 
PER 

and 

(2.6) =inf 4). 
R 

This means that, for any e > 0, there exist a point Po (x1 , yJ) in R such that 

(2.7) ij < ' + 

By (2.2), (2.6) and (2.7) there follows 

qIj+l < 4qI J - qI+1J- - ,j-I 
(2.8) 

< 4(A + E) - 3 = tz + 4c, 

similar inequalities being satisfied by Ij-i, 0i+1,J and qI-i,J . Repeating this argu- 
ment N times one gets, for each point PN such that d(Po, PN) = Nh, that 

(2.9) O(PN) < ,A + 4Ne . 

Now by (2.5) there indeed exists a point PN X U with d(Po , Pr) = Nh. Thus (2.5) 
and (2.9), together with (2.3), lead to 

(2.10) L + 4 e> 0. 

This, being true for any positive E, implies , > 0, as claimed in (2.4). 

' This is a convenient abbreviation for Aqi,j < 0 for any (xi, yj) C R. Such obvious abbrevi- 
ations are repeatedly used below. 
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Substituting q5 - ' for q5 in Lemma 2.1, we get the more general 
LEMMA 2.2. If the region R fulfills (2.1 ) and if 4 and ' are bounded and 

(2.11) Aoi+j < /w,jx (xi, yi) C R. 

and 

(2.12) ij >-ij (xi , yi) CER 

then 

(2.13) sj > 7ij (x,,, yi) C R. 

An immediate corollary of this is 
LEMMA 2.3. If R C Rb, and if 4) is bounded and 

(2.14) -M2 < A4(R) _ - i, 

(2.15) A2 _ +() l 1 

then 

(2.16) A2 + (52/2)(b2 _ y 2) ? 0ij _ Al + (31/2)(b2 - yj2), (xi, yj) E R. 

It is also easily deduced from Lemma 2.2 that the Dirichlet problem, for the 
discrete Poisson equation in a region R which satisfies (2.1), has one and only one 
bounded solution. 

3. Interior Estimates for the Dirichlet-Poisson Discrete Operator. In this section 
difference-quotients of a function 4) at the center of a square Rbb are estimated in 

terms of Aq5(Rbb) and 4(Rbb). This square Rbb is shown in Fig. 1, where a notation is 
introduced for some points related to that square. Reference to this notation is made 
in subsequent proofs, in an obvious manner. Thus, RABCD designates the (discrete) 
interior part of the rectangle ABCD; RABCD designates the (discrete) boundary of 
that rectangle; AB is simply the segment AB; etc. 

Y 

B V _G W A 

C H D 

FIGURE 1. The square RuW = RABCD and auxiliary notation. The denoted points have 
coordinates as follows: A(b, b), B(-b, b), C(-b, -b), D(b, -b), E(-b, 0), F(b, 0), G(o, b), 
H(O,-b), I(bb, O), J(O, lb), K()b, lb), L(.b, fb), M(lb, lb), N(-Ib, :b), 0(0, O), V(-2b, b), 
W~lb, b) . 
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ly 

Q2 Ql G. P2 P 

F Is _ S- - X ?~~I 

0G G3 
0 1 I 

U2 U11 

--I 1I I 

R RI R3H HI S3 S Si 

FIGURE 2. The rectangle Rab = RPQRS and auxiliary notation. The points have coordinates 
as follows: G(O, b), H(O,-b), 0(0, O), P(a, b), Q( -a, b), R(-a,-b), S(a,-b), T(a, O), U(-a, O) . 
PIJ is the arbitrary net point (of Section 5) whose (positive) coordinates are (xi, yj), where 
xI < a, yj < b. This point determines the location of all the subscripted points by requiring 
that RP1Q1Rl1s be a square with base on the line RS and center at P1j ; T2U2 be a centerline, 
through PITJ , of the rectangle RP2Q2RS ; and G3H1 is a centerline, through PIj , of the square 
IRP3Q3R3S3 

The first two lemmas of this section have slightly more general forms than neces- 
sary for the interior estimates (Theorem 3.1). Instead of the square Rbb these 
lemmas deal with the rectangle Ra, and refer therefore to the notation introduced 
in Fig. 2. The more general forms of these lemmas will be useful in Section 5. 

LEMMA 3.1. If 

(3.1) 4(Rab) = 0 

and 

(3.2) | AO (Rab)| < 6 

then 

(3.3) [ ai,o I < bb/2 

for every ? xi | < a. 
Proof. We define the antisymmetric function 

(3.4) Foci= - 

This gives 

(3.5) 'ij,-ho= io, 

(3.6) | < '(jA4ij + iAl,1I) $ , (Xi yj) E Rbb, 

and 

(3.7) NI(RPQUT) = 0. 
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By Lemma 2.2 it now follows from (3.6) and (3.7) that 

(3.8) N ij I -< lyi(b- yi)b (xi, yD) E RPQUT, 

and in particular 

(3.9) I'ij I < 'h(b - h)) X|i < a, 

which, together with (3.5), involves (3.3). 
LEMMA 3.2. If 

(3.10) IA4(Rab) = 0, 

(3.11) 4(QR) = k(RS) = q(SP) = 0 

and 

(3.12) I 4(PQ)l ? s 

then 

(3.13) 1 adyo 4I < A12b 

for each I xi a. 
Proof. Again we define ' to be the antisymmetric part of 4, as in (3.4). In the 

present case this entails (3.5) as well as 

(3.14) ATI(Rab) = 0, 

(3.15) (QU) = (UT) = (TP) = 0, 

and 

(3.16) I"(PQ) 1 < 

By Lemma 2.2 applied to RPQUT we therefore have 

(3.17) I I I <? 1yj/2b, (xi, yj) E RpQut, 

so that, by (3.5), 

(3.18) | Iy4io I = (1/h)I 'i'1 I < ,u/2b. 

We could of course interchange PQ with RS in the above lemma. The next 
lemma is of the same type, but its proof is more involved and gives an estimate 
at the center of the square Rbb only. (Notation thus refers to Fig. 1.)2 

LEMMA 3.3. If 

(3.19) A4)(Rbb) = 0, 

(3.20) 4(AB) = O(BC) = O(CD) = 0, 

and 

(3.21) O4(DA) < ?,, 

.then 

(3.22) i 9yooo I < 14/2b. 
2 Simpler and better proofs to Lemmas 3.3, 3.6 and 3.7 are included in a subsequent paper. 
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Proof. The auxiliary function T is defined by 

(3.22a) Ti= 4(+iij - i,-j + 0-ij --i,-j) 

which entails 

(3.22b) To,= haooo, 

(3.23) AT(Rbb) = 0 

(3.24) T(AB) = T(EF) = 0, 

and 

(3.25) I(AF) I < 2 I 'I(BE) I < 

We further define three other auxiliary functions, 1, T2 and V, by requiring 

'I (EF) = 0, f'I(BE) = VIA(AF) = -iU, 'I1(AB) = 
(3.26)22 

(2) 
' 
(RABEF) = 0; 

N2(EF) = Q. , 2(BE) = 4'2(AF) = - N2(AB) = 1p 

(3.27) aP2(OG) = 0, ATJ 2(RAGOF) = ?1g! (RGBEO) = 0; 

iIA(EF) = I(AB) = 0, 3'(BE) = I'3(AF) = 
(3.28) 

IA'I3(RABEF) 
= 0. 

Clearly, TI2 in RAGOF is antisymmetric about the diagonal OA (its symmetric part 
vanishing on RAGOF and therefore also throughout RAGOF). Thus O2(OA) = 0, 
and (assuming u > 0) 

(3.29) T 2(ROAG) > 0. 

Similarly 

(3.30) T 2(ROBG) > 0. 

This means that TI2 has no local maximum at any interior point of the segment GO. 
At other points of RABEF we have defined TI2 to be discrete harmonic, so that TI2 
has no local maximum throughout RABEF . Now '1 is discrete harmonic anywhere 
in RABEF . Thus I2 - 1 also cannot have any local maximum in RABEF . But on the 
boundary RABEF the function I2 - 1 vanishes, and so we have proved that 

(3.31) - i < 0, (xi, yj) E RABEF. 

This, together with (3.29) and (3.30), give 

(3.32) 4(ROBA) ? 0. 

Using Lemma 2.2 we gather, from (3.23)-(3.26) and (3.28), the following two 
inequalities: 

(3.33) |pj 'I{ < y13 (xi yi) E RABEF, 

(3-34) hi 71 + ij< y/ (xi, Yj) C~ RABEF. 
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These inequalities, along with (3.32), entail 

(3.35) | Hi"j I < Ayj/2b, (xi, yj) E RAOB, 

which gives, by (3.22b), the desired estimate. 
The next lemmas estimate second-order difference-quotients. Again we shall 

use "antisymmetrization" methods, except that now "double-antisymmetrization" 
will be used, instead of the "one-direction antisymmetrization" employed for the 
above first-order estimates. 

LEMMA 3.4. If 

(3.36) 4(Rbb) = 0 

and 

(3.37) I AO(Rbb) | _ , 

then 

(3.38) I4zyo4O I < ( log (b/h)). 

Proof. We define the auxiliary doubly-antisymmetric function 

(3.39) = 4(;+ ? 4,-,-4-i). 

This function clearly satisfies 

(3.40) T(IAGOF) = 0, 

(3.41) I A(RABCD) I - 5, 

and 

(3.42) 1,1 = h2&z+0 0,0. 

To estimate ' we introduce the comparison function 

(3.43) x(x, y) = xy log [2b/(x + y)], x ? 0, y > 0, 

for which the following interesting properties are easily verified: 

(3.44) X(RAGOF) > 0, 

(3.45) -2 < Ax(RAGOF) 2 - 

By Lemma 2.2, applied to RAGOF, we therefore get 

(3.46) 3< 3X(X yj) (xi, YXj) E RAGOF, 

and in particular 

(3.47) Tij I < ?5x(h, h) = ?h2 log (b/h), 

so that, in virtue of (3.42), our lemma is proved. 
LEMMA 3.5. If 4 satisfies (3.36) and (3.37) then 

(3.48) max (j I3 84)oo 1, I '0yyoo I) - (2 + 2 log (b/h))6. 

Proof. We follow here practically the same lines as in the proof of Lemma 3.4, 
except that the antisymmetrizations are done with respect to the lines x =My 
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rather than the axis. That is, here we put 

(3.49) *j~j = 
I 

= 1( j + 0-i-j - cj,i - 
0_j,-i) 

which again provides (3.41), and also yields 

3.50) 4(RBOA) = 0, 

and 

(3.51) *o = (h2/4)(a(9y0,0 - o). 

The comparison function in the present case is defined as 

(3.52) x(x, y) = 1(y2 - x2) log (b/y), y > xJ, 

which again has the property (3.45), and also 

(3.53) X(RBOA) = 0. 

Thus, applying Lemma 2.2 to the triangle RBOA , we get 

(3.54) ij | - 3x(xi, Yj), (xi, yj) E RBOA 

and in particular 

(3.55) IojiI < 2?x(O, h) = '5h2log (b/h). 

This estimate, together with (3.51) and the requirement (3.37), yields (3.48). 
LEMMA 3.6. If 

(3.56) AO(Rbb) = 0 

and 

(3.57) j (Rbb) } ? 8 

then 

(3.58) | I9foo I ? 8,-/b2. 

Proof. We define ' as in (3.39), so that (3.42) holds. Also, by (3.56) and (3.57), 

(3.59) ANF4(RABCD) = 0, 

(3.60) | (RABCD) I - 
and 

(3.61) (EF) = (OG) = 0. 

Four other auxiliary functions, *jA, 4,2 and 3, are defined as follows: 

(3.62) i= 8uxiyj/b, (xi, yj) E RGOF; 

(3.63) Vii(GO) = 1(OF) = 0, 1(GF) = A'1(RGOF) 0; 

3 IA(GO) = 2(OF) = 0, 2(GM) = (4x/b -),4) 

(3.64) 'tA2(MF) = (4y/b - 1),4, A*2(RGOF) = 0; 

I3(GO) = 3(OF) = 0, 4'3(RMJOI) = 0, 3(GM) = (4x/b - 1), 
(3.65) *'I3(MF) = (4y/b - 1), A*3(RGJM) = AM3(RMIF) = 0. 
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On MF the function '3 is linear and vanishes at K. Hence, in the triangle R1Ir., 
3 is antisymmetric about the median IK, and so assumingg > 0) 

(3.66) 1 (RMIK) > 0. 

Similiarly 

(3.67) ' 3(RMJL) > 0. 

The function ' has therefore no maximum in RGoF . The discrete harmonic function 
* has no interior minimum and so the difference 3 _ j2 cannot have any maximum 
in RGOF . But on the boundary RGoF this difference 3 _ 2 vanishes, and thus it 
should be nonpositive throughout RGOF, i.e. 

(3.68) j < 2 (xi, yj) E RGo0. 

By (3.65), (3.66), (3.67) and (3.68) we finally have 

(3.69) 4 2(RLJOIK) _ 0, 

which is the main point of this proof. By using Lemma 2.2 for RGOF we get the 
following two inequalities: 

(3.70) | 'ij I < ?I{,, (xi,yj) E RGo, 

(3.71) 4<,S + 4<., < *%,0 (xi, yj) E RGOF. 

The inequalities (3.69), (3.70) and (3.71) entail 

(3.72) |4'; j I < *,j (xi, Yj) E RLJOI. 

In particular 

(3.73) | 1 l i | _ ' = 8,h2/b2 

which, in virtue of (3.42), proves our lemma. 
LEMMA 3.7. If O satisfies (3.56) and (3.57), then 

(3.74) max (!l&4zfoo l, I a,,,,oo 1) < 4i/b2. 

Proof. We define the doubly-antisymmetric function I as in (3.49), which, 
under the conditions of the present lemma, implies 

(3.75) A*'(RABCD) = 0, 

(3.76) j4'(AB) I < 'i, '(OA) = (OB) = 0, 

and by (3.56), 

(3.77) (2/h2)*o,1 = 41(ay00,0 - az+?0?) = aVy4?o? = 

Auxiliary functions are defined by 

(3.78) < , = 2A(yj2 _ xi2)/b2 (xi, yj) E RAOB; 

(3.79) "(OA) = V1(OB) = 0, '1(AB) = 1 A4(RAB) = 0; 

(3.80) 422(OA) = 2(OB) = 0, '2(AB) = (1 - 21 x I/b)M, A*2(RAOB) = 0. 

In the same way as (3.69) is established in the proof of Lemma 3.6, it is here shown 
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that 

(3.81) J2(RVNOMW) > 0. 

Lemma 2.2, applied here to the triangle RAOB, leads to the two inequalities 

(3.82) * 1 i | -<4s t , (xi, Yj) E RAOB, 

(3.83) 4', + ,'12 < ,, (xi, yj) E RAOB, 

which, together with (3.81), involve 

(3.84) I hi I < Phi, (xi, yj) E RvoMw. 

This, by (3.77), completes the proof. 
THEOREM 3.1. If 

(3.85) |A4(Rbb) | < 

and 

(3.86) | (14b) |_A 

then 

(3.87) l 4oo l < , + lb 2, 

(3.88) max ( oI do 1 looo l) < 2ti/b + 2ba, 

(3.89) 1 axyo,o I l 8,u/b2 + (2 log (b/h)) 5, 

and 

(3.90) max (I oa,,Ooo 1, I ,0o o) < 41u/b2+ (2 + log (b/h))5. 

Proof. By the linearity of the Dirichlet-Laplace operator, this theorem is a 
direct corollary of Lemmas 2.3, 3.1-3.7. 

Remark A. By symmetry, ,u in estimates (3.87)-(3.90) may be replaced by 

1X= 8(AG + IGB + IBE + IEC + ICH + HD + IDF + IFA), 

where (3.86) is replaced by 

I 4(AG) I <- wa, I4(GB) A < /GB, etc. 

Remark B. With slight modifications, all the above lemmas and proofs are 
applicable for functions of n variables, with A defined as the n-dimensional discrete 
Laplace operator. Practically no change is needed in Lemmas 2.3, 3.1-3.4 and their 
proofs, and the changes to be introduced in the other lemmas are quite obvious 
in nature. As a result, the following generalization of Theorem 3.1 is obtained: 

THEOREM 3.2. In n-dimensional Euclidean space with coordinates xi , X2 X * * * Xn 

let h be some positive increment and N some positive integer, and b = Nh; and let 

(3.91) Rb(n) = {Xk = ikh ik integer, ikl < N, (1 < k < n)}, 

(3.92) Rb(n) = {Xk = ikh ik integer, Iik < N, (1 < k < n)}, 

(3.93) Rb(n) = Rb(n) - Rb(n) 
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With this notation, if 

(3.94) (Rb | 

and 

(3.95) 1(Rb~) ) | 

then 

(3.96) lo I u + lb 2, 

(3.97) I <xkbOI_ n$n/b + bbb, 1 k < n, 

(3.98) 1 1 ? 4nM/b2 + (3 log (b/h)>6, 1 < k < 1 ? n, 

and 

(3.99) 1 w4Okxk' I< 4(n - 1),/b2 + [1/n + (1-1/n) log (b/h)]4, 1 < k < n. 

Here the operators A and a denote the n-dimensional analogues to the central 
difference-quotients defined in (2.0). The subscript 0 denotes the origin (0, 0, 

0), which is at the center of the cube Rb(n) 

Remark on possible improvements to the estimates. Under the conditions there 
imposed, all the above estimates are the best possible ones, except for a possible 
reduction of the numerical coefficients. The lowest possible coefficients can be 
easily computed numerically. 

For example, we show this for the estimate of Lemma 3.4. Let + be the function 
for which 

(3.100) (Rbb) = (EF) = +(GH) = 0, 

(3.101) A?(RAGOF) = AP(RCHOE) = 6, 

and 

(3.102) A'(RBEOG) = A (RDFOH) = 6- 

It is clear by symmetry that 

(3.103) A+(EF) = A'(GH) = 0, 

so that + satisfies the conditions (3.36) and (3.37). Furthermore, if 4 is any other 
function satisfying these conditions, we may again define I as in (3.39), and then 
show by (3.40), (3.41), (3.42) and Lemma 2.2 that 

(3.104) 1 4ox 0,0 l < axo'0 0 

Thus, by numerically solving (3.100)-(3.102) we would get the best coefficient to 
replace the ' in estimate (3.38). This coefficient cannot be less than 2, since, in 
virtue of the left-side inequality in (3.45), it is inferable by Lemma 2.2 that 

(3.105) ?ij _ 'Xbiyj log [b/(xi + yj)], (xi, yj) E RAGOF, 

so that 

(3.106) 9xy{oo > 16 log (b/2h). 
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This example obviously shows that the dependence on I log h I exhibited in 
Theorems 3.1 and 3.2 cannot be suppressed, unless more restrictive conditions are 
specified. Theorems with such extra restrictions are the objective of the next section. 

4. Interior Estimates for Holder Continuous AO. For the differential case, it is 
known [7] that when AO satisfies a H6lder condition, such a condition is obtainable 
also for every second-order derivative of O. Motivated by this are the following 
lemmas and theorem, which give h-free estimates for the second-order difference- 
quotients. 

LEMMA 4.1. If 

(4.1) 4(Rbb) = 0, 

and 

(4.2) I Aoij - A000 I - H(| xi I + I yj D), (xi , yj) E Rbb, 

for some constants H and 0 < a < 1, then 

(4.3) l aXY00I 0 I _ 4Hba/3a. 

Proof. We define the auxiliary function T as in (3.39). The proof then follows 
roughly the same lines as that of Lemma 3.4, except that the comparison function 
for the present case should be 

(4.4) x(x, y) = xy[(2b)a - (x + y)I, x ? 0, y _ 0. 

This is a proper comparison function here, since it has the property 

(4.5) -2 < Ax(x, y)/a(x + y)a < -2 x ? 0, y > 0, 

and it also fulfills (3.44). 
Remark. The condition (4.2) may be replaced by the weaker one 

(4.2a) 4 1 Aij + As-i,-j - AO-ij - i,-j H( xi + I y I ), (xi , yj) E Rbb, 

which is all we need for the above proof. 
LEMMA 4.2. If O satisfies conditions (4.1) and (4.2), then 

(4.6) max (I a4oo l, LI ayyfoo I) _ 4Hba/3a + 1 A4ool 

Proof. We follow the method of proof of Lemma 3.5. As a comparison function 
we use here 

(4.7) x(x, y) = 2(y2 - x2)[ba-yi, I x y 

which fulfils (3.53), as well as 

(4.8) -2 < Ax(x, y)/ay' < 2, Y _ I x 

In the same way as in Section 3, these lemmas can be combined together with 
Lemmas 3.6 and 3.7, into one theorem: 

THEOREM 4.1. With constants H and 0 < a < 1, if 

(4.9) I Ai - A0I0 I < H(I Xi I + I yj I)a, (xi , yi) E Rbb, 
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and 

(4.10) l c(R0b) I ? M 

then 

(4.11) | 1xy'o o I _ SM/b2 + 4Hba/3a, 

and 

(4.12) max (I O3xxooO!, o,~o~l) ? 4/I/b2 + 4Hba/3a + 21 Aooo . 

Remark. As in Section 3 (in the remark following Theorem 3.2), it is here also 
easily demonstrated that, under conditions (4.9) and (4.10), estimates (4.11) and 
(4.12) are essentially the best possible ones. 

It is known, however, that Holder-continuity, like (4.9), is not necessary to get 
h-free estimates for the second order difference quotients. On the other hand, just 
continuity is not sufficient. This is shown by the example 

(4.13 ) 4 (x, y) = Xy log log [1/(X2 + y2)] x2 + y2 ? er. 

The Laplacian of this function is everywhere continuous, whereas its mixed second- 
order derivative is not bounded, its leading term in the vicinity of x = y = 0 
being log log [1/(x2 + y2)]. 

5. Estimates up to the Boundary. The theorems of Sections 3 and 4 provide 
estimates for the difference-quotients not only at the center of a square, but also, 
in fact, at any internal point of practically any region. Indeed, for each such internal 
point we may construct a square S, with boundary 8, completely contained in the 
region, with this point at its center. Now, a bound for sups I 4'! is furnished by well- 
known methods (Lemma 2.3, for instance) so that the above theorems are readily 
applicable, yielding estimates for the difference-quotients at the center of S, as 
desired. 

However, in order to estimate the difference-quotients near the boundary of 
the region, account must obviously be taken of the smoothness of both the boundary 
data and the boundary itself. The simplest (but still typical) case is that of a 
straight portion of the boundary on which the function identically vanishes. In 
such a case we can simply use reflection to continue the function across this portion 
of the boundary. Some points in a neighborhood of the previous boundary now are 
bounded away from the new boundary, and can be handled by interior estimates. 

As an example, we shall now use this method of reflection to get estimates for. 
the difference-quotients everywhere in the rectangle Rab. 

THEOREM 5.1. If 

(5.1) 0(Ra) = 0 

and 

(5.2) I AO(Rab) ? 6, 

then, for any point (xr, YJ) E Rab, 

(5 .3) ilor 
1 1 be y 
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(5.5) a ,y4I,j < (2 + 3 log (2b/h))>, 

and 

(5.6) max (I a& jI,|,1 | a&yy4I, |) < (2 + 2 log (2b/h)>5. 

Proof. We first extend the domain of definition of 4 from Ri, to the whole plane, 
by reflections across the boundary Rab i.e., we require, for any x and y that are 
integral multiples of h, 

(5.7) 4(a + x, y) = - O(a -x, y), 

(5.8) 0(-a + x, y) = -0(-a - x, y), 

(5.9) +(x, b + y) = -+(x, b -y), 

and 

(5.10) +(x, -b + y) = -+(x, -b - y). 

It is trivial that, for such a function 4 that is given in Rab and fulfills (5.1), these 
requirements indeed define a unique extension, to the entire plane. The condition 
(5.2) is now also extended to the whole plane 

(5.11) lA4)<, j l -0o < i, j < 0o. 

Also, by Lemma 2.3, 

(5.12) ga|< lb26 -0o < i, j < co. 

Without loss of generality we may assume that xI ? 0, yJ > 0 and then employ 
the notation of Fig. 2. It is clear from (5.1) and (5.7)-(5.10) that 

(5.13) 4)(P2S) = 0, 

(5.14) O(P3Q3) = 0, 

(5.15) O(Q2R) = 0, 

and 

(5.16) O(RS) = O(R1S1) = O(R3S3) = 0, 

and also, by (5.9) and Lemma 2.3, 

(5.17) 1 4(PlQ1) |, | 4(P2Q2) I < -6[b2_ (b - 2yJ)2] = 26yi(b - yr). 

From (5.11), (5.13), (5.15), (5.16) and (5.17) we get, through Lemmas 3.1 and 
3.2 applied to the rectangle RP2Q2RS, that 

I a ) I < 26y (b - J + y(b ? y )^ 
2(b1 ( y j) 

(5.18) - 6(b _ Y-)2 

2(b + yJ) 
? b. 



490 ACHI, BRANDT 

Next, by considering Lemmas 3.1 and 3.2 on the square RQR3,S3P, ,and taking into 
account (5.11), (5.12), (5.14) and (5.16), we obtain 

(5.19) | aX+I rj | _ lbb + (1/b)b26 = W. 

Finally, we apply Theorem 3.1 (with Remark A that follows the theorem) to the 
square RP1Q1R1S1, on the edges of which 1 is bounded by (5.16), (5.17) and 
(5.12), so as to get 

I 2 14 (6b + 2Oyj (b - y)) + (log b + YJ) 6 

(5.20) [2 - 6(yj/(b + 
yj) 

)2 + 3 log [(b + yr)/hI6 

< (2 + 2 log (2b/h))6, 

as well as 

max ( | 4'x OIJ | | IJ) 

< 4 
(6b2+ 2byl(b - y~i)) + 1 

2log b + y 

(5.21) (b + yr) 2 2 3 l 

- 
3 (b - + 2log b + yj] 

< ( + 2 log (2b/h))b. 

Remark. All the estimates in Theorem 5.1 are intentionally written in terms of 
the length b alone, without referring to the length a. By symmetry we can therefore 
replace b in these estimates by min (a, b). Furthermore, the estimates are true for 
any a, no matter how large. In fact, they are true even for the case a = oo, i.e. 
for the infinite strip Rb (provided 4 is not unbounded, cf. Section 2). The proof for 
this limiting case is altogether the same as the proof of Theorem 5.1. 

Note that estimate (5.3) is precisely the best estimate for I yoj I not depending 
on the length a, the mesh size h and the location (xI, yJ). Indeed, in the limiting 
case a oo, h -O 0, the function 

(5.22) = A(b2 _ y2)6 

satisfies (5.1) and (5.2), and also exactly attains the bound of (5.3), since 

(5.23) (a/&y)o(x, ib) -=fbb. 

The method of extending interior estimates up to the boundary of a rectangle 
by means of reflections is also applicable to the h-free estimates of Section 4. But 
in this case we have to impose some extra conditions in the vicinity of the corners 
of the rectangle. That such extra conditions are necessary we see by studying the 
function + defined in (3.100)-(3.102). This function apparently behaves very well 
in the square RAGOF It has a constant Af throughout this square, and on the bound- 
ary of this square + vanishes. Yet, it is clear from (3.105) that 

(5.24) &xyjj _ 16log (b/4h), 

which means that in the neighborhood of a corner the mixed second-order difference- 
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quotient is unbounded as h -> 0. This leads us to the introduction of condition 
(5.27) in the following theorem. 

THEOREM 5.2. If 

(5.25) 4(Rab) = 0, 

and, for some fixed point (xl, Yj) E Rab and fixed constants H and 0 < a < 1, 

(5.26) | A(Ai j - AOI,,j I < H( |xi - XI I + I yj - yj | )aX (Xi X yi) C RubX 

and 

(5.27) AOI,j I _ H(a - I XI I + b - I yj I )', 

then 

(5.28) 1 1XY+J I < 7Hba/3a + 8M/b2, 

where 

(5.29) = max I O. 
Rab 

(a, in its turn, could be estimated by Lemma 2.3 or the like). 
Proof. Again we extend the domain of definition of 4 to the entire plane, by re- 

quiring (5.7)-(5.10). Let i and j be any two positive integers. By elementary geo- 
metrical considerations, conditions (5.26) and (5.27) yield 

I A/oI+i,J+j + ALp-ij-j -4(pI-iJ+j / O|)I+i,J-j | 

(5.30) < H{4(A + B)' + (xi + yj) + (J xi - 2A I + yj)o 

+ (xi + yj- 2B I) + (I xi - 2A + - yj2B - i 
where 

(5.31) A=a-lXII, B=b-IyjI. 

For any positive i, 7 and a it is true that < ? 7 ? 2(t + 7)a. Using this relation to 
estimate the right-hand side of (5.30), we derive 

( 5 i)+ij+j + A 3r-,j-j -\I-i,j+j - A\r+iJ-j I _ 7H(xi + 
y)a, 

(5.32) 
0 ' xi, y j ' 00 

Hence, by Lemmas 4.1 (with the appended remark) and 3.6, we prove our theorem. 

6. Estimates for L = A + p(x, y)&x + q(x, y)ay. We define the finite-difference 
operator L as follows: 

Loij = Aoij + pip&x4i,j + qij(9oj 

(6.1) = h-2[(1 + hpij/2)4j+,jj + (1 -hpi j12)Oij 

+ (1 + hqi jl2)oi j+l + (1 - hqj j2)fOijj- 40isj]. 

For constant p and q, this operator is, basically, the canonical form of the second 
order elliptic equations with constant coefficients. Since we are primarily interested 
in estimates for the difference-quotients and not for the function itself, we do not 
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give the slightly modified but technically cumbersome treatment that is required 
when we have an extra term ri joij in L. In this section we give up-to-the-boundary 
estimates, in a rectangle, for 0 and its difference-quotients, in terms of sup: Lso 
and the rectangle's width. 

It is clear that no such estimates are possible unless we have some bounds for 
p(x, y) and q(x, y). We shall therefore assume throughout this section that finite 
bounds P and Q are given, such that 

(6.2) i j1 < P. qiqJ -I Q, 
wherever L is defined. We shall also assume in this section that the mesh size h is so 
small that 

(6.3) h < 2 min (P-', Q). 

Under this condition L is a nonnegative operator, i.e. all the parenthesized coeffi- 
cients in the right-hand side of (6.1) are nonnegative, and therefore the following 
extension of Lemma 2.2 holds: 

LEMMA 6.1. If the region R satisfies (2.1) and (6.3), and if 0 and I are bounded 
and 

(6.4) Li?j < Li,,j, (x, yi) E R 

and 

(6-5) t~ -tjX(xi Xyj) CER 

then 

(6.6) oid > *i,j, (xi, yj) X R. 

Proof. Owing to the linearity of L, it suffices to prove the lemma for ' identically 
zero. For this case the proof is the same as the proof of Lemma 2.1, except that (2.2) 
is replaced by (6.4) and so (2.8) should be replaced by 

(1 + (h/2)q1,j)41,j+l < 440 j - (1 -(h12)pJ)0I- j 

- (1 + (h/2)p1,j)0.+IJ - (1 - (h/2)qr,J)r1,-i 
(6.7) 

< 4(0A + e) - (1 - (h/2)p,.),u - (1 + (h/2)pr, )/A 

- (1 -(h/2)qjg 

= (1 + (h/2)q1,.)j. + 4e, 

which implies 

(6.8) 4I,J?i < + Ke 

where 

(6.9) K = max 
4 
hP/24' 1-hQ/2> 

This K replaces the number 4 in (2.9) and (2.10), and the proof is completed in the 
same way. 
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LEMMA 6.2. If R C Rb and 

(6.9b) h < min (2P', Q-') 

and if 4 is bounded and 

(6.10) 1 LO(R)I <X 

and 

(6.11) ()|<- JAs 

then 

(6.12) 1 A + (X/2)(b 2eQlb _ 2eQ'jyj"), (xi, yj) E R, 

where Q' = 11Q/10. (For mesh size sufficiently small, e.g. h < 3(b-CQ-3)1"2, we can 
put Q' = Q.) 

Proof. We put H = Q'h. By an elementary manipulation we get, for y > h, 

Lty2eQIyl I 

Q= e{2 + (y2 +h2) Q' [Q eH + H 2 + f CH] 

,e - e -I H i-el-H 

(6.13) 2H 2 2Jf 

> e {2 + (y2 + h2)Q' [Q/ e + eH -2 - Q e- e-H] 

+ 2y [2Q eH 
e H Q eH+ H]} 

By expanding eH and eH in Taylor's series, bearing in mind (6.9b) which implies 
H < 1.1, it is readily seen that, for Q' = 11Q/10, each of the two bracketed terms is 
positive. (For Q' = Q the first of these terms might be negative, but, for 
h < 3(b'Q3)"2, the sum of the two terms is still positive.) Thus, for y > h, 

(6.14) L{y2eQ'IvI} _ 2eQ'' > 2. 

The same inequality is derived, in a similar way, for y < -h, and also, in a trivial 
way, for y = 0. Consequently, for any y, 

(6.15) Li (X/2) (b2eQ'b - y2eQ'IlI) } <? i;. 

The proof is now completed by Lemma 6.1, using (6.10), (6. 11) and (6.15). 
LEMMA 6.3. If condition (6.3) is satisfied and if 

(6.16) 4)(b) = 0 

(6.17) jLo (Rab) X X 

and 

(6.18) b(P + Q) < 1 
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then 

(6.19) I Ak((Rab) I-< X/[1 - b(P + Q)], 

and 

(6.20) max ( |xoij I I I y I) < Xb/[1 - b(P + Q)]. 
Rab 

Proof. We put 

(6.21) a = max IA ,3 i. 
Rab 

By (5.3) and (5.4) of Theorem 5.1 we have 

(6.22) bS > max (I i, I c I) =71X (say). 
Rab 

But, by (6.17) and (6.2) we also have 

(6.23) a- ?X + max I pij8x4)ij + qijdsy4ij I _ X + (P + Q)n1. 
Rab 

The three inequalities (6.22), (6.23) and (6.18) immediately imply (6.19) and 
(6.20). 

THEOREM 6.1. If 

(6.25) 4({1ab) = 0, 

(6.26) LO(Rab)I < -X7 

and 

(6.27) h < (P + Q)F 
then 

(6.28) max j~xjjj cyj~j < Xb( 1 + 2b(P + Q)-e 
l 

Rab \b(P + Q) 1- h(P + Q) / 

(6.29) IAO(Rab) I < 2X(1 + 1i(P ) eQb) 

(L, P, Q and Q' are defined in (6.1), (6.2) and Lemma 6.2.) 
Remarks. (A) For small P + Q, better estimates are given by Lemma 6.3. 

(B) Estimate (6.29) provides, through Theorem 5, estimates for all the first and 
second order difference-quotients of q in Rab. 

Proof. We define a and 77 as in (6.21) and (6.22), so that (6.23) holds. There 
exists, of course, a point (x,, yJ) in Rab such that 

(6.30) 1 = max (I lxoz , I I atlI).1 

For any length c which is an integral multiple of h, we may construct a square of net 

points Sc , with (xI, yXJ) at its center and 2c the length of its sides. If S, is not con- 
tained in Rab , we extend the definition of 4 to S6 by reflections, as in (5.7)-(5.10). 
Consequently we have 

(6.31 A AO A(S<-I < 
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and by Lemma 6.2, 

(6.32) I ( _ (X/2)b2eQ'b 

By Theorem 3.1 these inequalities entail 

(6.33) X< ? 6/2 + (2/c) (X/2)b 2eQ'b. 

This, together with (6.23), gives 

(6.34) X ? (c/2)[X + n(P + Q)] + (X/c) b2eQ'b. 

Now, (P + Q)-' is not necessarily a multiple of h, but, by requirement (6.27), we 
have some 0 _ 0 < 1 such that we may put 

(6.35) c = (P + Q)- - Oh. 

Then, in place of (6.34) we may write 

(6.36) X < 'X(P + Q)-1 + 'n + Xb2(P + Q)eQ'b/[l - h(P + Q)] 
which involves (6.28). And (6.29) then follows from (6.28) and (6.23). 

7. Estimates for the Neumann Problem. Most of the estimates of Sections 3, 4, 
5 and 6 have simple parallels in the case of Neumann boundary conditions, i.e. when 
the data are given in terms of 344R) instead of 4(R), where A& is some finite differ- 
ence analogue to the normal derivative. In the present paper we are only interested 
in a rectangular region X, and the definition of a. is therefore quite straightforward. 
To each net point P of the boundary I? there is one and only one interior neighbour, 
P say, and we denote by P an exterior neighbour of P such that P is the midpoint of 
the segment PP. To be consistent with the definition (2.0) of Ax and ,,9, we define 
A, also as a central difference expression, namely 

(7.1) an4(P) = (1/2h)[4(P) -(P)]. 

(Cf. Section 8 for a noncentral definition.) Note that (7.1) assumes 4 to be defined 
also at the exterior point P, for each point P in R. Thus, to make the number of con- 
ditions equal the number of points, we should assume that AO is known not only in 
R but also on the boundary R. 

THEOREM 7.1. If 

(7.2) anO(Rkb) = 0 

and 

(7.3) I A)( Rab)j I - 

then 

74) } yo/ (Rab ) I < bb. 

Proof. We extend the definition of 4 to the whole plane by requiring 

(7.5) =M+ij = PM-ij X 

(7.6) CP-M+i,j = -M-i'j, 

(7.7) ki,N+j = OiN-j I 
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and 

(7.8) 4,-N~j 

where M = a/h, N b/h. By (7.2) and (7.3), these requirements uniquely define 
an extension, which satisfies, throughout the plane, 

(7.9) IA41ij I <, -00 <i,j < O0. 

We now introduce two antisymmetric functions 

(7.10) = I(~ j-i,-i), -00 < i, j <00, 

and 

(7.11) tj = (i,j+j - iJ-j), -00 < j<00, 

where J is any integer in the interval 0 ? J < N. By (7.3)-(7.11) we clearly get 

(7.12) hti'o 0, -00 < i < 00, 

(7.13) 4o = 0, -00 < i < 00 

(7.14) L1WiIj < 6, -o0 < ijj < ?? 

and 

(7.15) AeI4,j I < 6, -00 < i j < 00 

Also, by (7.10), (7.7) and (7.8), 

(7.16) Vi,2N= -2 (4,N+N - 4i,-N-N) = 2 (4i,N-N - Oi,-N+N) = 0. 

Thus, by (7.12), (7.14), (7.16) and Lemma 2.3 applied to the infinite strip 
0 ? y < 2b, 

(7.17) 41iN+j I 
< (6/2)(b - yi2), -b < y, ? b. 

Consequently, 

|I+',NI| = 2 | i,J+N 4'iJ-N| = 2 |'i,N-J- ciP,J-N I 

(7.18) = PI ,NJ I < (6/2)(b2 _ YJ2) 

This, together with (7.13), (7.15) and Lemma 2.2 applied to the strip 0 _ yj ? b, 
yield 

(7.19) 1.- yj(b< - yj) + 1 2 (b62 
- yJ2) _ yj < b.6 < 2 b~~y- b2 -y~) ~?b 

Thus 

(7.20) | iJ| (b-h) + 2-b (b2 _ y 2) < 6b - < 6b. layoij (b-h) +2b 2b= 

Remark. This theorem clearly implies 

(7.21) | ax4(Ra) I < ab. 

There is however no bound to 3lxo ,j in terms of b and 6 alone, without referring to 
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the length a. Indeed, the function 

(7.22) i4j = 6(axi - I xi 

fulfills (7.2) and (7.3), but 

(7.23) 
Axdio 

= S(a - 1h) 

is unbounded for indefinitely large a. 
THEOREM 7.2. If 0 satisfies (7.2) and (7.3) then 

(7.24) | xy0(Rab)j < (8 + log(b/h))b 

and 

(7.25) max (I axx Oil4 lay 0v)-,(I) b + 2 + 2 
log 

b 
6 

Proof. We continue 4 to the whole plane by requiring (7.5)-(7.8), which imply 
(7.9). For any point PI,j we define two auxiliary functions 

(7.26) 44,i = 4(cI+iJ+j + 4)X-i,j-j - OI+inJ-j - XI-iJ+j) 

and 

(7.27) Z,- 4=(I+iJ+j + XI-iJ-j I+j,J+i - XI-jJ-i)* 

By (7.9), Theorem 7.1 and (7.21) we deduce 

(7.28) j&4%j 
<ba, jlh.j <(a b -<e < i,j < 00o 

(7.29) 1 8s+1.il < by, 1 av{22jl < '(a + b) 6, -Xo < i, j < as 

and, clearly, 

(7.30) ,. = = j 4 = 2 = 0, -00 < ij < 00. 

Let S be a square with the net point P1,j at its center and 2b the length of its sides. 
From (7.29) and (7.30) we easily derive 

(7.31) {l(S) < b2, {2(S) _ 1b(a + b)6, 

which, by Theorem 3.1 and (7.28), involves estimates (7.24) and (7.25) at the 
arbitrary point P1,ja 

8. Rematk on Noncentral Difference-Quotients. In Sections 2 and 7 we have 
defined ax, 0,a, & ,x and An by central-difference expressions. This is not necessary. 
In fact, the theorems of Sections 3, 4, 5, 6 and 7 remain practically the same when 
we replace these difference-quotients by the "forward" expressions 

axoi~j = (1/h) (oi+),j - ij), 

a +0ij = (1/h)(01j+l - ij), 

(8.1 ) awyqfij = (1/h2) (4)i+lj+l + 4)ij - 4)i+l,jij+), 

An++(P) = (1/h)[0 (P) - + (P)], P C R, 

where P is defined as in Section 7. The modifications of the theorems and their proofs 
are simple. They all use, instead of Lemma 2.2, the following generalization. 
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LEMMA 8.1. If R satisfies (2.1), 4 and & are bounded and 

(8.2) lvij<lA~,(xi, yi) C R. 

and if the boundary ft is the union of two disjoint sets 

(8.3) R=R+R 

such that 

(8.4) f^j>7/~,(xi, Yj) CE2 

and 

(8.5) +(P) + +(P) ? {p (P) + qt(P), P E R. 
then 

(8.6) 0 ij_> iC, (xi,y1) ER. 

Proof. Because of linearity, it suffices to treat the case A 0. This can be proved 
in the same way as Lemma 2.1, with an obvious modification. 

With this lemma replacing Lemma 2.2, all the proofs of estimates for &+ remain 
essentially the same as those for a. The theorems concerning interior estimates need 
be modified so that the estimated difference-quotient is evaluated at the center of 
the square in the theorem. For example, Lemma 3.4 would now be replaced by 

LEMMA 8.2. Denote 

(8.7) R+bx= {(x, yj)-b + h < xi < b,-b + h < yj < bl. 

If 

(8.8) 44Rb) = O 

and 

(8.9) I A4(Rbb) ? < 

then 

(8.10) 1a+ 0oo1 < (4 log (b/h) ) . 

Proof. We define the auxiliary doubly-antisymmetric function 

(8.11) {i~j = (4(i,j + O-iX+,-j+1- s,-?1 -- 

This function clearly satisfies 

(8.12) 'POj + lij = 0, C,'O + Cj = 0, IAR1b) = 0, 

(8.13) 1lAt'(Rb,)l < a 

and 

(8.14) =h'+ 

To estimate 4/' we again introduce the comparison function 

(8.15) x(x, y) = y log [2b/(l x i + I y 1)] 
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which, in virtue of (8.12), (8.13) and Lemma 8.1, here gives 

(8.16) I A.1j <36 x(Xiyj) X- (h h)A (xi, yJ) E RAGOF . 

In particular 

(8.17) 1~1 i ' 8 c x(h, h) = 3h2log (b/h), 

so that, by (8.14), our lemma is proved. 
Similar modifications in lemmas, theorems and proofs are easily carried out 

throughout Sections 3, 4, 5, 6 and 7, to yield theorems for the noncentral difference 
quotients. In the case of the Neumann problem, the reflections about the edges 
(7.5)-(7.8) are replaced by reflections about interior lines parallel to, and at a 
distance h/2 from, the edges. 
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